Metamath Proof Explorer


Theorem sbcn1

Description: Move negation in and out of class substitution. One direction of sbcng that holds for proper classes. (Contributed by NM, 17-Aug-2018)

Ref Expression
Assertion sbcn1 [˙A / x]˙ ¬ φ ¬ [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 sbcex [˙A / x]˙ ¬ φ A V
2 sbcng A V [˙A / x]˙ ¬ φ ¬ [˙A / x]˙ φ
3 2 biimpd A V [˙A / x]˙ ¬ φ ¬ [˙A / x]˙ φ
4 1 3 mpcom [˙A / x]˙ ¬ φ ¬ [˙A / x]˙ φ