Metamath Proof Explorer


Theorem sbcne12

Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcne12 [˙A / x]˙ B C A / x B A / x C

Proof

Step Hyp Ref Expression
1 nne ¬ B C B = C
2 1 sbcbii [˙A / x]˙ ¬ B C [˙A / x]˙ B = C
3 2 a1i A V [˙A / x]˙ ¬ B C [˙A / x]˙ B = C
4 sbcng A V [˙A / x]˙ ¬ B C ¬ [˙A / x]˙ B C
5 sbceqg A V [˙A / x]˙ B = C A / x B = A / x C
6 nne ¬ A / x B A / x C A / x B = A / x C
7 5 6 bitr4di A V [˙A / x]˙ B = C ¬ A / x B A / x C
8 3 4 7 3bitr3d A V ¬ [˙A / x]˙ B C ¬ A / x B A / x C
9 8 con4bid A V [˙A / x]˙ B C A / x B A / x C
10 sbcex [˙A / x]˙ B C A V
11 10 con3i ¬ A V ¬ [˙A / x]˙ B C
12 csbprc ¬ A V A / x B =
13 csbprc ¬ A V A / x C =
14 12 13 eqtr4d ¬ A V A / x B = A / x C
15 14 6 sylibr ¬ A V ¬ A / x B A / x C
16 11 15 2falsed ¬ A V [˙A / x]˙ B C A / x B A / x C
17 9 16 pm2.61i [˙A / x]˙ B C A / x B A / x C