Metamath Proof Explorer


Theorem sbcnel12g

Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011)

Ref Expression
Assertion sbcnel12g A V [˙A / x]˙ B C A / x B A / x C

Proof

Step Hyp Ref Expression
1 sbcng A V [˙A / x]˙ ¬ B C ¬ [˙A / x]˙ B C
2 df-nel B C ¬ B C
3 2 sbcbii [˙A / x]˙ B C [˙A / x]˙ ¬ B C
4 df-nel A / x B A / x C ¬ A / x B A / x C
5 sbcel12 [˙A / x]˙ B C A / x B A / x C
6 4 5 xchbinxr A / x B A / x C ¬ [˙A / x]˙ B C
7 1 3 6 3bitr4g A V [˙A / x]˙ B C A / x B A / x C