Metamath Proof Explorer


Theorem sbcnestg

Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbcnestgw when possible. (Contributed by NM, 27-Nov-2005) (Proof shortened by Mario Carneiro, 11-Nov-2016) (New usage is discouraged.)

Ref Expression
Assertion sbcnestg A V [˙A / x]˙ [˙B / y]˙ φ [˙ A / x B / y]˙ φ

Proof

Step Hyp Ref Expression
1 nfv x φ
2 1 ax-gen y x φ
3 sbcnestgf A V y x φ [˙A / x]˙ [˙B / y]˙ φ [˙ A / x B / y]˙ φ
4 2 3 mpan2 A V [˙A / x]˙ [˙B / y]˙ φ [˙ A / x B / y]˙ φ