Metamath Proof Explorer


Theorem sbcnestgw

Description: Nest the composition of two substitutions. Version of sbcnestg with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Nov-2005) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion sbcnestgw A V [˙A / x]˙ [˙B / y]˙ φ [˙ A / x B / y]˙ φ

Proof

Step Hyp Ref Expression
1 nfv x φ
2 1 ax-gen y x φ
3 sbcnestgfw A V y x φ [˙A / x]˙ [˙B / y]˙ φ [˙ A / x B / y]˙ φ
4 2 3 mpan2 A V [˙A / x]˙ [˙B / y]˙ φ [˙ A / x B / y]˙ φ