Metamath Proof Explorer


Theorem sbcng

Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004)

Ref Expression
Assertion sbcng A V [˙A / x]˙ ¬ φ ¬ [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 dfsbcq2 y = A y x ¬ φ [˙A / x]˙ ¬ φ
2 dfsbcq2 y = A y x φ [˙A / x]˙ φ
3 2 notbid y = A ¬ y x φ ¬ [˙A / x]˙ φ
4 sbn y x ¬ φ ¬ y x φ
5 1 3 4 vtoclbg A V [˙A / x]˙ ¬ φ ¬ [˙A / x]˙ φ