Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbcng
Next ⟩
sbcimg
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbcng
Description:
Move negation in and out of class substitution.
(Contributed by
NM
, 16-Jan-2004)
Ref
Expression
Assertion
sbcng
⊢
A
∈
V
→
[
˙
A
/
x
]
˙
¬
φ
↔
¬
[
˙
A
/
x
]
˙
φ
Proof
Step
Hyp
Ref
Expression
1
dfsbcq2
⊢
y
=
A
→
y
x
¬
φ
↔
[
˙
A
/
x
]
˙
¬
φ
2
dfsbcq2
⊢
y
=
A
→
y
x
φ
↔
[
˙
A
/
x
]
˙
φ
3
2
notbid
⊢
y
=
A
→
¬
y
x
φ
↔
¬
[
˙
A
/
x
]
˙
φ
4
sbn
⊢
y
x
¬
φ
↔
¬
y
x
φ
5
1
3
4
vtoclbg
⊢
A
∈
V
→
[
˙
A
/
x
]
˙
¬
φ
↔
¬
[
˙
A
/
x
]
˙
φ