Metamath Proof Explorer


Theorem sbco2

Description: A composition law for substitution. For versions requiring fewer axioms, but more disjoint variable conditions, see sbco2v and sbco2vv . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 30-Jun-1994) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 17-Sep-2018) (New usage is discouraged.)

Ref Expression
Hypothesis sbco2.1 z φ
Assertion sbco2 y z z x φ y x φ

Proof

Step Hyp Ref Expression
1 sbco2.1 z φ
2 sbequ12 z = y z x φ y z z x φ
3 sbequ z = y z x φ y x φ
4 2 3 bitr3d z = y y z z x φ y x φ
5 4 sps z z = y y z z x φ y x φ
6 nfnae z ¬ z z = y
7 1 nfsb4 ¬ z z = y z y x φ
8 3 a1i ¬ z z = y z = y z x φ y x φ
9 6 7 8 sbied ¬ z z = y y z z x φ y x φ
10 5 9 pm2.61i y z z x φ y x φ