Metamath Proof Explorer


Theorem sbcom3

Description: Substituting y for x and then z for y is equivalent to substituting z for both x and y . Usage of this theorem is discouraged because it depends on ax-13 . For a version requiring a disjoint variable, but fewer axioms, see sbcom3vv . (Contributed by Giovanni Mascellani, 8-Apr-2018) Remove dependency on ax-11 . (Revised by Wolf Lammen, 16-Sep-2018) (Proof shortened by Wolf Lammen, 16-Sep-2018) (New usage is discouraged.)

Ref Expression
Assertion sbcom3 zyyxφzyzxφ

Proof

Step Hyp Ref Expression
1 nfa1 yyy=z
2 drsb2 yy=zyxφzxφ
3 1 2 sbbid yy=zzyyxφzyzxφ
4 sb4b ¬yy=zzyyxφyy=zyxφ
5 sbequ y=zyxφzxφ
6 5 pm5.74i y=zyxφy=zzxφ
7 6 albii yy=zyxφyy=zzxφ
8 4 7 bitrdi ¬yy=zzyyxφyy=zzxφ
9 sb4b ¬yy=zzyzxφyy=zzxφ
10 8 9 bitr4d ¬yy=zzyyxφzyzxφ
11 3 10 pm2.61i zyyxφzyzxφ