Metamath Proof Explorer


Theorem sbcop1

Description: The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of its first component. (Contributed by AV, 8-Apr-2023)

Ref Expression
Hypothesis sbcop.z z = x y φ ψ
Assertion sbcop1 [˙a / x]˙ ψ [˙ a y / z]˙ φ

Proof

Step Hyp Ref Expression
1 sbcop.z z = x y φ ψ
2 sbc5 [˙a / x]˙ ψ x x = a ψ
3 opeq1 a = x a y = x y
4 3 equcoms x = a a y = x y
5 4 eqeq2d x = a z = a y z = x y
6 1 biimprd z = x y ψ φ
7 5 6 syl6bi x = a z = a y ψ φ
8 7 com23 x = a ψ z = a y φ
9 8 imp x = a ψ z = a y φ
10 9 exlimiv x x = a ψ z = a y φ
11 2 10 sylbi [˙a / x]˙ ψ z = a y φ
12 11 alrimiv [˙a / x]˙ ψ z z = a y φ
13 opex a y V
14 13 sbc6 [˙ a y / z]˙ φ z z = a y φ
15 12 14 sylibr [˙a / x]˙ ψ [˙ a y / z]˙ φ
16 sbc5 [˙ a y / z]˙ φ z z = a y φ
17 1 biimpd z = x y φ ψ
18 5 17 syl6bi x = a z = a y φ ψ
19 18 com3l z = a y φ x = a ψ
20 19 imp z = a y φ x = a ψ
21 20 alrimiv z = a y φ x x = a ψ
22 vex a V
23 22 sbc6 [˙a / x]˙ ψ x x = a ψ
24 21 23 sylibr z = a y φ [˙a / x]˙ ψ
25 24 exlimiv z z = a y φ [˙a / x]˙ ψ
26 16 25 sylbi [˙ a y / z]˙ φ [˙a / x]˙ ψ
27 15 26 impbii [˙a / x]˙ ψ [˙ a y / z]˙ φ