Metamath Proof Explorer


Theorem sbcralg

Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion sbcralg A V [˙A / x]˙ y B φ y B [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 nfcv _ y A
2 sbcralt A V _ y A [˙A / x]˙ y B φ y B [˙A / x]˙ φ
3 1 2 mpan2 A V [˙A / x]˙ y B φ y B [˙A / x]˙ φ