Metamath Proof Explorer


Theorem sbcrel

Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion sbcrel A V [˙A / x]˙ Rel R Rel A / x R

Proof

Step Hyp Ref Expression
1 sbcssg A V [˙A / x]˙ R V × V A / x R A / x V × V
2 csbconstg A V A / x V × V = V × V
3 2 sseq2d A V A / x R A / x V × V A / x R V × V
4 1 3 bitrd A V [˙A / x]˙ R V × V A / x R V × V
5 df-rel Rel R R V × V
6 5 sbcbii [˙A / x]˙ Rel R [˙A / x]˙ R V × V
7 df-rel Rel A / x R A / x R V × V
8 4 6 7 3bitr4g A V [˙A / x]˙ Rel R Rel A / x R