Metamath Proof Explorer


Theorem sbcrex

Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcrex [˙A / x]˙ y B φ y B [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 nfcv _ y A
2 sbcrext _ y A [˙A / x]˙ y B φ y B [˙A / x]˙ φ
3 1 2 ax-mp [˙A / x]˙ y B φ y B [˙A / x]˙ φ