Metamath Proof Explorer


Theorem sbcth2

Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypothesis sbcth2.1 x B φ
Assertion sbcth2 A B [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 sbcth2.1 x B φ
2 1 rgen x B φ
3 rspsbc A B x B φ [˙A / x]˙ φ
4 2 3 mpi A B [˙A / x]˙ φ