Metamath Proof Explorer


Theorem sbctt

Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion sbctt A V x φ [˙A / x]˙ φ φ

Proof

Step Hyp Ref Expression
1 dfsbcq2 y = A y x φ [˙A / x]˙ φ
2 1 bibi1d y = A y x φ φ [˙A / x]˙ φ φ
3 2 imbi2d y = A x φ y x φ φ x φ [˙A / x]˙ φ φ
4 sbft x φ y x φ φ
5 3 4 vtoclg A V x φ [˙A / x]˙ φ φ
6 5 imp A V x φ [˙A / x]˙ φ φ