Metamath Proof Explorer


Theorem sbel2x

Description: Elimination of double substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 29-Sep-2018) (New usage is discouraged.)

Ref Expression
Assertion sbel2x φ x y x = z y = w y w x z φ

Proof

Step Hyp Ref Expression
1 nfv y φ
2 nfv x φ
3 1 2 2sb5rf φ y x y = w x = z y w x z φ
4 ancom y = w x = z x = z y = w
5 4 anbi1i y = w x = z y w x z φ x = z y = w y w x z φ
6 5 2exbii y x y = w x = z y w x z φ y x x = z y = w y w x z φ
7 excom y x x = z y = w y w x z φ x y x = z y = w y w x z φ
8 3 6 7 3bitri φ x y x = z y = w y w x z φ