Metamath Proof Explorer


Theorem sbequ1

Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993) Revise df-sb . (Revised by BJ, 22-Dec-2020)

Ref Expression
Assertion sbequ1 x = t φ t x φ

Proof

Step Hyp Ref Expression
1 equeucl x = t y = t x = y
2 ax12v x = y φ x x = y φ
3 1 2 syl6 x = t y = t φ x x = y φ
4 3 com23 x = t φ y = t x x = y φ
5 4 alrimdv x = t φ y y = t x x = y φ
6 df-sb t x φ y y = t x x = y φ
7 5 6 syl6ibr x = t φ t x φ