Metamath Proof Explorer


Theorem sbequ12a

Description: An equality theorem for substitution. (Contributed by NM, 2-Jun-1993) (Proof shortened by Wolf Lammen, 23-Jun-2019)

Ref Expression
Assertion sbequ12a x = y y x φ x y φ

Proof

Step Hyp Ref Expression
1 sbequ12r x = y x y φ φ
2 sbequ12 x = y φ y x φ
3 1 2 bitr2d x = y y x φ x y φ