Metamath Proof Explorer


Theorem sbequ12r

Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004) (Proof shortened by Andrew Salmon, 21-Jun-2011)

Ref Expression
Assertion sbequ12r x = y x y φ φ

Proof

Step Hyp Ref Expression
1 sbequ12 y = x φ x y φ
2 1 bicomd y = x x y φ φ
3 2 equcoms x = y x y φ φ