Metamath Proof Explorer


Theorem sbequ2

Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993) Revise df-sb . (Revised by BJ, 22-Dec-2020) (Proof shortened by Wolf Lammen, 3-Feb-2024)

Ref Expression
Assertion sbequ2 x = t t x φ φ

Proof

Step Hyp Ref Expression
1 df-sb t x φ y y = t x x = y φ
2 1 biimpi t x φ y y = t x x = y φ
3 equvinva x = t y x = y t = y
4 equcomi t = y y = t
5 sp x x = y φ x = y φ
6 4 5 imim12i y = t x x = y φ t = y x = y φ
7 6 impcomd y = t x x = y φ x = y t = y φ
8 7 aleximi y y = t x x = y φ y x = y t = y y φ
9 2 3 8 syl2im t x φ x = t y φ
10 ax5e y φ φ
11 9 10 syl6com x = t t x φ φ