Metamath Proof Explorer


Theorem sbf

Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv . (Contributed by NM, 14-May-1993) (Revised by Mario Carneiro, 4-Oct-2016)

Ref Expression
Hypothesis sbf.1 x φ
Assertion sbf y x φ φ

Proof

Step Hyp Ref Expression
1 sbf.1 x φ
2 sbft x φ y x φ φ
3 1 2 ax-mp y x φ φ