Metamath Proof Explorer


Theorem sbgoldbalt

Description: An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020)

Ref Expression
Assertion sbgoldbalt n Even 4 < n n GoldbachEven n Even 2 < n p q n = p + q

Proof

Step Hyp Ref Expression
1 2z 2
2 evenz n Even n
3 zltp1le 2 n 2 < n 2 + 1 n
4 1 2 3 sylancr n Even 2 < n 2 + 1 n
5 2p1e3 2 + 1 = 3
6 5 breq1i 2 + 1 n 3 n
7 3re 3
8 7 a1i n Even 3
9 2 zred n Even n
10 8 9 leloed n Even 3 n 3 < n 3 = n
11 3z 3
12 zltp1le 3 n 3 < n 3 + 1 n
13 11 2 12 sylancr n Even 3 < n 3 + 1 n
14 3p1e4 3 + 1 = 4
15 14 breq1i 3 + 1 n 4 n
16 4re 4
17 16 a1i n Even 4
18 17 9 leloed n Even 4 n 4 < n 4 = n
19 pm3.35 4 < n 4 < n n GoldbachEven n GoldbachEven
20 isgbe n GoldbachEven n Even p q p Odd q Odd n = p + q
21 simp3 p Odd q Odd n = p + q n = p + q
22 21 a1i n Even p q p Odd q Odd n = p + q n = p + q
23 22 reximdva n Even p q p Odd q Odd n = p + q q n = p + q
24 23 reximdva n Even p q p Odd q Odd n = p + q p q n = p + q
25 24 imp n Even p q p Odd q Odd n = p + q p q n = p + q
26 20 25 sylbi n GoldbachEven p q n = p + q
27 26 a1d n GoldbachEven n Even p q n = p + q
28 19 27 syl 4 < n 4 < n n GoldbachEven n Even p q n = p + q
29 28 ex 4 < n 4 < n n GoldbachEven n Even p q n = p + q
30 29 com23 4 < n n Even 4 < n n GoldbachEven p q n = p + q
31 2prm 2
32 2p2e4 2 + 2 = 4
33 32 eqcomi 4 = 2 + 2
34 rspceov 2 2 4 = 2 + 2 p q 4 = p + q
35 31 31 33 34 mp3an p q 4 = p + q
36 eqeq1 4 = n 4 = p + q n = p + q
37 36 2rexbidv 4 = n p q 4 = p + q p q n = p + q
38 35 37 mpbii 4 = n p q n = p + q
39 38 a1d 4 = n 4 < n n GoldbachEven p q n = p + q
40 39 a1d 4 = n n Even 4 < n n GoldbachEven p q n = p + q
41 30 40 jaoi 4 < n 4 = n n Even 4 < n n GoldbachEven p q n = p + q
42 41 com12 n Even 4 < n 4 = n 4 < n n GoldbachEven p q n = p + q
43 18 42 sylbid n Even 4 n 4 < n n GoldbachEven p q n = p + q
44 15 43 syl5bi n Even 3 + 1 n 4 < n n GoldbachEven p q n = p + q
45 13 44 sylbid n Even 3 < n 4 < n n GoldbachEven p q n = p + q
46 45 com12 3 < n n Even 4 < n n GoldbachEven p q n = p + q
47 3odd 3 Odd
48 eleq1 3 = n 3 Odd n Odd
49 47 48 mpbii 3 = n n Odd
50 oddneven n Odd ¬ n Even
51 49 50 syl 3 = n ¬ n Even
52 51 pm2.21d 3 = n n Even 4 < n n GoldbachEven p q n = p + q
53 46 52 jaoi 3 < n 3 = n n Even 4 < n n GoldbachEven p q n = p + q
54 53 com12 n Even 3 < n 3 = n 4 < n n GoldbachEven p q n = p + q
55 10 54 sylbid n Even 3 n 4 < n n GoldbachEven p q n = p + q
56 6 55 syl5bi n Even 2 + 1 n 4 < n n GoldbachEven p q n = p + q
57 4 56 sylbid n Even 2 < n 4 < n n GoldbachEven p q n = p + q
58 57 com23 n Even 4 < n n GoldbachEven 2 < n p q n = p + q
59 2lt4 2 < 4
60 2re 2
61 60 a1i n Even 2
62 lttr 2 4 n 2 < 4 4 < n 2 < n
63 61 17 9 62 syl3anc n Even 2 < 4 4 < n 2 < n
64 59 63 mpani n Even 4 < n 2 < n
65 64 imp n Even 4 < n 2 < n
66 simpll n Even 4 < n p q n = p + q n Even
67 simpr n Even 4 < n p p
68 67 anim1i n Even 4 < n p q p q
69 68 adantr n Even 4 < n p q n = p + q p q
70 simpll n Even 4 < n p q n Even 4 < n
71 70 anim1i n Even 4 < n p q n = p + q n Even 4 < n n = p + q
72 df-3an n Even 4 < n n = p + q n Even 4 < n n = p + q
73 71 72 sylibr n Even 4 < n p q n = p + q n Even 4 < n n = p + q
74 sbgoldbaltlem2 p q n Even 4 < n n = p + q p Odd q Odd
75 69 73 74 sylc n Even 4 < n p q n = p + q p Odd q Odd
76 simpr n Even 4 < n p q n = p + q n = p + q
77 df-3an p Odd q Odd n = p + q p Odd q Odd n = p + q
78 75 76 77 sylanbrc n Even 4 < n p q n = p + q p Odd q Odd n = p + q
79 78 ex n Even 4 < n p q n = p + q p Odd q Odd n = p + q
80 79 reximdva n Even 4 < n p q n = p + q q p Odd q Odd n = p + q
81 80 reximdva n Even 4 < n p q n = p + q p q p Odd q Odd n = p + q
82 81 imp n Even 4 < n p q n = p + q p q p Odd q Odd n = p + q
83 66 82 jca n Even 4 < n p q n = p + q n Even p q p Odd q Odd n = p + q
84 83 ex n Even 4 < n p q n = p + q n Even p q p Odd q Odd n = p + q
85 84 20 syl6ibr n Even 4 < n p q n = p + q n GoldbachEven
86 65 85 embantd n Even 4 < n 2 < n p q n = p + q n GoldbachEven
87 86 ex n Even 4 < n 2 < n p q n = p + q n GoldbachEven
88 87 com23 n Even 2 < n p q n = p + q 4 < n n GoldbachEven
89 58 88 impbid n Even 4 < n n GoldbachEven 2 < n p q n = p + q
90 89 ralbiia n Even 4 < n n GoldbachEven n Even 2 < n p q n = p + q