Metamath Proof Explorer


Theorem sbgoldbm

Description: If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021)

Ref Expression
Assertion sbgoldbm n Even 4 < n n GoldbachEven n 6 p q r n = p + q + r

Proof

Step Hyp Ref Expression
1 breq2 n = m 4 < n 4 < m
2 eleq1w n = m n GoldbachEven m GoldbachEven
3 1 2 imbi12d n = m 4 < n n GoldbachEven 4 < m m GoldbachEven
4 3 cbvralvw n Even 4 < n n GoldbachEven m Even 4 < m m GoldbachEven
5 eluz2 n 6 6 n 6 n
6 zeoALTV n n Even n Odd
7 sgoldbeven3prm m Even 4 < m m GoldbachEven n Even 6 n p q r n = p + q + r
8 7 expdcom n Even 6 n m Even 4 < m m GoldbachEven p q r n = p + q + r
9 sbgoldbwt m Even 4 < m m GoldbachEven n Odd 5 < n n GoldbachOddW
10 rspa n Odd 5 < n n GoldbachOddW n Odd 5 < n n GoldbachOddW
11 df-6 6 = 5 + 1
12 11 breq1i 6 n 5 + 1 n
13 5nn 5
14 13 nnzi 5
15 oddz n Odd n
16 zltp1le 5 n 5 < n 5 + 1 n
17 14 15 16 sylancr n Odd 5 < n 5 + 1 n
18 17 biimprd n Odd 5 + 1 n 5 < n
19 12 18 syl5bi n Odd 6 n 5 < n
20 19 imp n Odd 6 n 5 < n
21 isgbow n GoldbachOddW n Odd p q r n = p + q + r
22 21 simprbi n GoldbachOddW p q r n = p + q + r
23 22 a1i n Odd 6 n n GoldbachOddW p q r n = p + q + r
24 20 23 embantd n Odd 6 n 5 < n n GoldbachOddW p q r n = p + q + r
25 24 ex n Odd 6 n 5 < n n GoldbachOddW p q r n = p + q + r
26 25 com23 n Odd 5 < n n GoldbachOddW 6 n p q r n = p + q + r
27 26 adantl n Odd 5 < n n GoldbachOddW n Odd 5 < n n GoldbachOddW 6 n p q r n = p + q + r
28 10 27 mpd n Odd 5 < n n GoldbachOddW n Odd 6 n p q r n = p + q + r
29 28 ex n Odd 5 < n n GoldbachOddW n Odd 6 n p q r n = p + q + r
30 29 com23 n Odd 5 < n n GoldbachOddW 6 n n Odd p q r n = p + q + r
31 9 30 syl m Even 4 < m m GoldbachEven 6 n n Odd p q r n = p + q + r
32 31 com13 n Odd 6 n m Even 4 < m m GoldbachEven p q r n = p + q + r
33 8 32 jaoi n Even n Odd 6 n m Even 4 < m m GoldbachEven p q r n = p + q + r
34 6 33 syl n 6 n m Even 4 < m m GoldbachEven p q r n = p + q + r
35 34 imp n 6 n m Even 4 < m m GoldbachEven p q r n = p + q + r
36 35 3adant1 6 n 6 n m Even 4 < m m GoldbachEven p q r n = p + q + r
37 5 36 sylbi n 6 m Even 4 < m m GoldbachEven p q r n = p + q + r
38 37 impcom m Even 4 < m m GoldbachEven n 6 p q r n = p + q + r
39 38 ralrimiva m Even 4 < m m GoldbachEven n 6 p q r n = p + q + r
40 4 39 sylbi n Even 4 < n n GoldbachEven n 6 p q r n = p + q + r