Metamath Proof Explorer


Theorem sbgoldbo

Description: If the strong binary Goldbach conjecture is valid, the original formulation of the Goldbach conjecture also holds: Every integer greater than 2 can be expressed as the sum of three "primes" with regarding 1 to be a prime (as Goldbach did). Original text: "Es scheint wenigstens, dass eine jede Zahl, die groesser ist als 2, ein aggregatum trium numerorum primorum sey." (Goldbach, 1742). (Contributed by AV, 25-Dec-2021)

Ref Expression
Hypothesis sbgoldbo.p P = 1
Assertion sbgoldbo n Even 4 < n n GoldbachEven n 3 p P q P r P n = p + q + r

Proof

Step Hyp Ref Expression
1 sbgoldbo.p P = 1
2 nfra1 n n Even 4 < n n GoldbachEven
3 3z 3
4 6nn 6
5 4 nnzi 6
6 3re 3
7 6re 6
8 3lt6 3 < 6
9 6 7 8 ltleii 3 6
10 eluz2 6 3 3 6 3 6
11 3 5 9 10 mpbir3an 6 3
12 uzsplit 6 3 3 = 3 6 1 6
13 12 eleq2d 6 3 n 3 n 3 6 1 6
14 11 13 ax-mp n 3 n 3 6 1 6
15 elun n 3 6 1 6 n 3 6 1 n 6
16 6m1e5 6 1 = 5
17 16 oveq2i 3 6 1 = 3 5
18 5nn 5
19 18 nnzi 5
20 5re 5
21 3lt5 3 < 5
22 6 20 21 ltleii 3 5
23 eluz2 5 3 3 5 3 5
24 3 19 22 23 mpbir3an 5 3
25 fzopredsuc 5 3 3 5 = 3 3 + 1 ..^ 5 5
26 24 25 ax-mp 3 5 = 3 3 + 1 ..^ 5 5
27 17 26 eqtri 3 6 1 = 3 3 + 1 ..^ 5 5
28 27 eleq2i n 3 6 1 n 3 3 + 1 ..^ 5 5
29 elun n 3 3 + 1 ..^ 5 5 n 3 3 + 1 ..^ 5 n 5
30 elun n 3 3 + 1 ..^ 5 n 3 n 3 + 1 ..^ 5
31 elsni n 3 n = 3
32 1ex 1 V
33 32 snid 1 1
34 33 orci 1 1 1
35 elun 1 1 1 1 1
36 34 35 mpbir 1 1
37 36 1 eleqtrri 1 P
38 37 a1i n = 3 1 P
39 simpl n = 3 p = 1 n = 3
40 oveq1 p = 1 p + q = 1 + q
41 40 oveq1d p = 1 p + q + r = 1 + q + r
42 41 adantl n = 3 p = 1 p + q + r = 1 + q + r
43 39 42 eqeq12d n = 3 p = 1 n = p + q + r 3 = 1 + q + r
44 43 2rexbidv n = 3 p = 1 q P r P n = p + q + r q P r P 3 = 1 + q + r
45 oveq2 q = 1 1 + q = 1 + 1
46 45 oveq1d q = 1 1 + q + r = 1 + 1 + r
47 46 eqeq2d q = 1 3 = 1 + q + r 3 = 1 + 1 + r
48 47 rexbidv q = 1 r P 3 = 1 + q + r r P 3 = 1 + 1 + r
49 48 adantl n = 3 q = 1 r P 3 = 1 + q + r r P 3 = 1 + 1 + r
50 df-3 3 = 2 + 1
51 df-2 2 = 1 + 1
52 51 oveq1i 2 + 1 = 1 + 1 + 1
53 50 52 eqtri 3 = 1 + 1 + 1
54 oveq2 r = 1 1 + 1 + r = 1 + 1 + 1
55 53 54 eqtr4id r = 1 3 = 1 + 1 + r
56 55 adantl n = 3 r = 1 3 = 1 + 1 + r
57 38 56 rspcedeq2vd n = 3 r P 3 = 1 + 1 + r
58 38 49 57 rspcedvd n = 3 q P r P 3 = 1 + q + r
59 38 44 58 rspcedvd n = 3 p P q P r P n = p + q + r
60 31 59 syl n 3 p P q P r P n = p + q + r
61 3p1e4 3 + 1 = 4
62 df-5 5 = 4 + 1
63 61 62 oveq12i 3 + 1 ..^ 5 = 4 ..^ 4 + 1
64 4z 4
65 fzval3 4 4 4 = 4 ..^ 4 + 1
66 64 65 ax-mp 4 4 = 4 ..^ 4 + 1
67 63 66 eqtr4i 3 + 1 ..^ 5 = 4 4
68 67 eleq2i n 3 + 1 ..^ 5 n 4 4
69 fzsn 4 4 4 = 4
70 64 69 ax-mp 4 4 = 4
71 70 eleq2i n 4 4 n 4
72 68 71 bitri n 3 + 1 ..^ 5 n 4
73 elsni n 4 n = 4
74 2prm 2
75 74 olci 2 1 2
76 elun 2 1 2 1 2
77 75 76 mpbir 2 1
78 77 1 eleqtrri 2 P
79 78 a1i n = 4 2 P
80 oveq1 p = 2 p + q = 2 + q
81 80 oveq1d p = 2 p + q + r = 2 + q + r
82 81 eqeq2d p = 2 n = p + q + r n = 2 + q + r
83 82 2rexbidv p = 2 q P r P n = p + q + r q P r P n = 2 + q + r
84 83 adantl n = 4 p = 2 q P r P n = p + q + r q P r P n = 2 + q + r
85 37 a1i n = 4 1 P
86 oveq2 q = 1 2 + q = 2 + 1
87 86 oveq1d q = 1 2 + q + r = 2 + 1 + r
88 87 eqeq2d q = 1 n = 2 + q + r n = 2 + 1 + r
89 88 rexbidv q = 1 r P n = 2 + q + r r P n = 2 + 1 + r
90 89 adantl n = 4 q = 1 r P n = 2 + q + r r P n = 2 + 1 + r
91 simpl n = 4 r = 1 n = 4
92 df-4 4 = 3 + 1
93 50 oveq1i 3 + 1 = 2 + 1 + 1
94 92 93 eqtri 4 = 2 + 1 + 1
95 94 a1i n = 4 r = 1 4 = 2 + 1 + 1
96 oveq2 r = 1 2 + 1 + r = 2 + 1 + 1
97 96 eqcomd r = 1 2 + 1 + 1 = 2 + 1 + r
98 97 adantl n = 4 r = 1 2 + 1 + 1 = 2 + 1 + r
99 95 98 eqtrd n = 4 r = 1 4 = 2 + 1 + r
100 91 99 eqtrd n = 4 r = 1 n = 2 + 1 + r
101 85 100 rspcedeq2vd n = 4 r P n = 2 + 1 + r
102 85 90 101 rspcedvd n = 4 q P r P n = 2 + q + r
103 79 84 102 rspcedvd n = 4 p P q P r P n = p + q + r
104 73 103 syl n 4 p P q P r P n = p + q + r
105 72 104 sylbi n 3 + 1 ..^ 5 p P q P r P n = p + q + r
106 60 105 jaoi n 3 n 3 + 1 ..^ 5 p P q P r P n = p + q + r
107 30 106 sylbi n 3 3 + 1 ..^ 5 p P q P r P n = p + q + r
108 elsni n 5 n = 5
109 3prm 3
110 109 olci 3 1 3
111 elun 3 1 3 1 3
112 110 111 mpbir 3 1
113 112 1 eleqtrri 3 P
114 113 a1i n = 5 3 P
115 oveq1 p = 3 p + q = 3 + q
116 115 oveq1d p = 3 p + q + r = 3 + q + r
117 116 eqeq2d p = 3 n = p + q + r n = 3 + q + r
118 117 2rexbidv p = 3 q P r P n = p + q + r q P r P n = 3 + q + r
119 118 adantl n = 5 p = 3 q P r P n = p + q + r q P r P n = 3 + q + r
120 37 a1i n = 5 1 P
121 oveq2 q = 1 3 + q = 3 + 1
122 121 oveq1d q = 1 3 + q + r = 3 + 1 + r
123 122 eqeq2d q = 1 n = 3 + q + r n = 3 + 1 + r
124 123 rexbidv q = 1 r P n = 3 + q + r r P n = 3 + 1 + r
125 124 adantl n = 5 q = 1 r P n = 3 + q + r r P n = 3 + 1 + r
126 simpl n = 5 r = 1 n = 5
127 92 oveq1i 4 + 1 = 3 + 1 + 1
128 62 127 eqtri 5 = 3 + 1 + 1
129 oveq2 r = 1 3 + 1 + r = 3 + 1 + 1
130 128 129 eqtr4id r = 1 5 = 3 + 1 + r
131 130 adantl n = 5 r = 1 5 = 3 + 1 + r
132 126 131 eqtrd n = 5 r = 1 n = 3 + 1 + r
133 120 132 rspcedeq2vd n = 5 r P n = 3 + 1 + r
134 120 125 133 rspcedvd n = 5 q P r P n = 3 + q + r
135 114 119 134 rspcedvd n = 5 p P q P r P n = p + q + r
136 108 135 syl n 5 p P q P r P n = p + q + r
137 107 136 jaoi n 3 3 + 1 ..^ 5 n 5 p P q P r P n = p + q + r
138 29 137 sylbi n 3 3 + 1 ..^ 5 5 p P q P r P n = p + q + r
139 138 a1d n 3 3 + 1 ..^ 5 5 n Even 4 < n n GoldbachEven p P q P r P n = p + q + r
140 28 139 sylbi n 3 6 1 n Even 4 < n n GoldbachEven p P q P r P n = p + q + r
141 sbgoldbm n Even 4 < n n GoldbachEven n 6 p q r n = p + q + r
142 rspa n 6 p q r n = p + q + r n 6 p q r n = p + q + r
143 ssun2 1
144 143 1 sseqtrri P
145 rexss P p q r n = p + q + r p P p q r n = p + q + r
146 144 145 ax-mp p q r n = p + q + r p P p q r n = p + q + r
147 rexss P q r n = p + q + r q P q r n = p + q + r
148 144 147 ax-mp q r n = p + q + r q P q r n = p + q + r
149 rexss P r n = p + q + r r P r n = p + q + r
150 144 149 ax-mp r n = p + q + r r P r n = p + q + r
151 simpr r n = p + q + r n = p + q + r
152 151 reximi r P r n = p + q + r r P n = p + q + r
153 150 152 sylbi r n = p + q + r r P n = p + q + r
154 153 adantl q r n = p + q + r r P n = p + q + r
155 154 reximi q P q r n = p + q + r q P r P n = p + q + r
156 148 155 sylbi q r n = p + q + r q P r P n = p + q + r
157 156 adantl p q r n = p + q + r q P r P n = p + q + r
158 157 reximi p P p q r n = p + q + r p P q P r P n = p + q + r
159 146 158 sylbi p q r n = p + q + r p P q P r P n = p + q + r
160 142 159 syl n 6 p q r n = p + q + r n 6 p P q P r P n = p + q + r
161 160 ex n 6 p q r n = p + q + r n 6 p P q P r P n = p + q + r
162 141 161 syl n Even 4 < n n GoldbachEven n 6 p P q P r P n = p + q + r
163 162 com12 n 6 n Even 4 < n n GoldbachEven p P q P r P n = p + q + r
164 140 163 jaoi n 3 6 1 n 6 n Even 4 < n n GoldbachEven p P q P r P n = p + q + r
165 15 164 sylbi n 3 6 1 6 n Even 4 < n n GoldbachEven p P q P r P n = p + q + r
166 165 com12 n Even 4 < n n GoldbachEven n 3 6 1 6 p P q P r P n = p + q + r
167 14 166 syl5bi n Even 4 < n n GoldbachEven n 3 p P q P r P n = p + q + r
168 2 167 ralrimi n Even 4 < n n GoldbachEven n 3 p P q P r P n = p + q + r