Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
3odd |
|
3 |
1 2
|
jctir |
|
4 |
|
omoeALTV |
|
5 |
|
breq2 |
|
6 |
|
eleq1 |
|
7 |
5 6
|
imbi12d |
|
8 |
7
|
rspcv |
|
9 |
3 4 8
|
3syl |
|
10 |
|
4p3e7 |
|
11 |
10
|
breq1i |
|
12 |
|
4re |
|
13 |
12
|
a1i |
|
14 |
|
3re |
|
15 |
14
|
a1i |
|
16 |
|
oddz |
|
17 |
16
|
zred |
|
18 |
13 15 17
|
ltaddsubd |
|
19 |
18
|
biimpd |
|
20 |
11 19
|
syl5bir |
|
21 |
20
|
imp |
|
22 |
|
pm2.27 |
|
23 |
21 22
|
syl |
|
24 |
|
isgbe |
|
25 |
|
3prm |
|
26 |
25
|
a1i |
|
27 |
|
eleq1 |
|
28 |
27
|
3anbi3d |
|
29 |
|
oveq2 |
|
30 |
29
|
eqeq2d |
|
31 |
28 30
|
anbi12d |
|
32 |
31
|
adantl |
|
33 |
|
simp1 |
|
34 |
|
simp2 |
|
35 |
2
|
a1i |
|
36 |
33 34 35
|
3jca |
|
37 |
36
|
adantl |
|
38 |
16
|
zcnd |
|
39 |
38
|
ad3antrrr |
|
40 |
|
3cn |
|
41 |
40
|
a1i |
|
42 |
|
prmz |
|
43 |
|
prmz |
|
44 |
|
zaddcl |
|
45 |
42 43 44
|
syl2an |
|
46 |
45
|
zcnd |
|
47 |
46
|
adantll |
|
48 |
39 41 47
|
subadd2d |
|
49 |
48
|
biimpa |
|
50 |
49
|
eqcomd |
|
51 |
50
|
3ad2antr3 |
|
52 |
37 51
|
jca |
|
53 |
26 32 52
|
rspcedvd |
|
54 |
53
|
ex |
|
55 |
54
|
reximdva |
|
56 |
55
|
reximdva |
|
57 |
56 1
|
jctild |
|
58 |
|
isgbo |
|
59 |
57 58
|
syl6ibr |
|
60 |
59
|
adantld |
|
61 |
24 60
|
syl5bi |
|
62 |
9 23 61
|
3syld |
|
63 |
62
|
com12 |
|
64 |
63
|
expd |
|
65 |
64
|
ralrimiv |
|