| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
3odd |
|
| 3 |
1 2
|
jctir |
|
| 4 |
|
omoeALTV |
|
| 5 |
|
breq2 |
|
| 6 |
|
eleq1 |
|
| 7 |
5 6
|
imbi12d |
|
| 8 |
7
|
rspcv |
|
| 9 |
3 4 8
|
3syl |
|
| 10 |
|
4p3e7 |
|
| 11 |
10
|
breq1i |
|
| 12 |
|
4re |
|
| 13 |
12
|
a1i |
|
| 14 |
|
3re |
|
| 15 |
14
|
a1i |
|
| 16 |
|
oddz |
|
| 17 |
16
|
zred |
|
| 18 |
13 15 17
|
ltaddsubd |
|
| 19 |
18
|
biimpd |
|
| 20 |
11 19
|
biimtrrid |
|
| 21 |
20
|
imp |
|
| 22 |
|
pm2.27 |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
isgbe |
|
| 25 |
|
3prm |
|
| 26 |
25
|
a1i |
|
| 27 |
|
eleq1 |
|
| 28 |
27
|
3anbi3d |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
eqeq2d |
|
| 31 |
28 30
|
anbi12d |
|
| 32 |
31
|
adantl |
|
| 33 |
|
simp1 |
|
| 34 |
|
simp2 |
|
| 35 |
2
|
a1i |
|
| 36 |
33 34 35
|
3jca |
|
| 37 |
36
|
adantl |
|
| 38 |
16
|
zcnd |
|
| 39 |
38
|
ad3antrrr |
|
| 40 |
|
3cn |
|
| 41 |
40
|
a1i |
|
| 42 |
|
prmz |
|
| 43 |
|
prmz |
|
| 44 |
|
zaddcl |
|
| 45 |
42 43 44
|
syl2an |
|
| 46 |
45
|
zcnd |
|
| 47 |
46
|
adantll |
|
| 48 |
39 41 47
|
subadd2d |
|
| 49 |
48
|
biimpa |
|
| 50 |
49
|
eqcomd |
|
| 51 |
50
|
3ad2antr3 |
|
| 52 |
37 51
|
jca |
|
| 53 |
26 32 52
|
rspcedvd |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
reximdva |
|
| 56 |
55
|
reximdva |
|
| 57 |
56 1
|
jctild |
|
| 58 |
|
isgbo |
|
| 59 |
57 58
|
imbitrrdi |
|
| 60 |
59
|
adantld |
|
| 61 |
24 60
|
biimtrid |
|
| 62 |
9 23 61
|
3syld |
|
| 63 |
62
|
com12 |
|
| 64 |
63
|
expd |
|
| 65 |
64
|
ralrimiv |
|