Metamath Proof Explorer


Theorem sbgoldbst

Description: If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020)

Ref Expression
Assertion sbgoldbst n Even 4 < n n GoldbachEven m Odd 7 < m m GoldbachOdd

Proof

Step Hyp Ref Expression
1 simpl m Odd 7 < m m Odd
2 3odd 3 Odd
3 1 2 jctir m Odd 7 < m m Odd 3 Odd
4 omoeALTV m Odd 3 Odd m 3 Even
5 breq2 n = m 3 4 < n 4 < m 3
6 eleq1 n = m 3 n GoldbachEven m 3 GoldbachEven
7 5 6 imbi12d n = m 3 4 < n n GoldbachEven 4 < m 3 m 3 GoldbachEven
8 7 rspcv m 3 Even n Even 4 < n n GoldbachEven 4 < m 3 m 3 GoldbachEven
9 3 4 8 3syl m Odd 7 < m n Even 4 < n n GoldbachEven 4 < m 3 m 3 GoldbachEven
10 4p3e7 4 + 3 = 7
11 10 breq1i 4 + 3 < m 7 < m
12 4re 4
13 12 a1i m Odd 4
14 3re 3
15 14 a1i m Odd 3
16 oddz m Odd m
17 16 zred m Odd m
18 13 15 17 ltaddsubd m Odd 4 + 3 < m 4 < m 3
19 18 biimpd m Odd 4 + 3 < m 4 < m 3
20 11 19 syl5bir m Odd 7 < m 4 < m 3
21 20 imp m Odd 7 < m 4 < m 3
22 pm2.27 4 < m 3 4 < m 3 m 3 GoldbachEven m 3 GoldbachEven
23 21 22 syl m Odd 7 < m 4 < m 3 m 3 GoldbachEven m 3 GoldbachEven
24 isgbe m 3 GoldbachEven m 3 Even p q p Odd q Odd m 3 = p + q
25 3prm 3
26 25 a1i m Odd 7 < m p q p Odd q Odd m 3 = p + q 3
27 eleq1 r = 3 r Odd 3 Odd
28 27 3anbi3d r = 3 p Odd q Odd r Odd p Odd q Odd 3 Odd
29 oveq2 r = 3 p + q + r = p + q + 3
30 29 eqeq2d r = 3 m = p + q + r m = p + q + 3
31 28 30 anbi12d r = 3 p Odd q Odd r Odd m = p + q + r p Odd q Odd 3 Odd m = p + q + 3
32 31 adantl m Odd 7 < m p q p Odd q Odd m 3 = p + q r = 3 p Odd q Odd r Odd m = p + q + r p Odd q Odd 3 Odd m = p + q + 3
33 simp1 p Odd q Odd m 3 = p + q p Odd
34 simp2 p Odd q Odd m 3 = p + q q Odd
35 2 a1i p Odd q Odd m 3 = p + q 3 Odd
36 33 34 35 3jca p Odd q Odd m 3 = p + q p Odd q Odd 3 Odd
37 36 adantl m Odd 7 < m p q p Odd q Odd m 3 = p + q p Odd q Odd 3 Odd
38 16 zcnd m Odd m
39 38 ad3antrrr m Odd 7 < m p q m
40 3cn 3
41 40 a1i m Odd 7 < m p q 3
42 prmz p p
43 prmz q q
44 zaddcl p q p + q
45 42 43 44 syl2an p q p + q
46 45 zcnd p q p + q
47 46 adantll m Odd 7 < m p q p + q
48 39 41 47 subadd2d m Odd 7 < m p q m 3 = p + q p + q + 3 = m
49 48 biimpa m Odd 7 < m p q m 3 = p + q p + q + 3 = m
50 49 eqcomd m Odd 7 < m p q m 3 = p + q m = p + q + 3
51 50 3ad2antr3 m Odd 7 < m p q p Odd q Odd m 3 = p + q m = p + q + 3
52 37 51 jca m Odd 7 < m p q p Odd q Odd m 3 = p + q p Odd q Odd 3 Odd m = p + q + 3
53 26 32 52 rspcedvd m Odd 7 < m p q p Odd q Odd m 3 = p + q r p Odd q Odd r Odd m = p + q + r
54 53 ex m Odd 7 < m p q p Odd q Odd m 3 = p + q r p Odd q Odd r Odd m = p + q + r
55 54 reximdva m Odd 7 < m p q p Odd q Odd m 3 = p + q q r p Odd q Odd r Odd m = p + q + r
56 55 reximdva m Odd 7 < m p q p Odd q Odd m 3 = p + q p q r p Odd q Odd r Odd m = p + q + r
57 56 1 jctild m Odd 7 < m p q p Odd q Odd m 3 = p + q m Odd p q r p Odd q Odd r Odd m = p + q + r
58 isgbo m GoldbachOdd m Odd p q r p Odd q Odd r Odd m = p + q + r
59 57 58 syl6ibr m Odd 7 < m p q p Odd q Odd m 3 = p + q m GoldbachOdd
60 59 adantld m Odd 7 < m m 3 Even p q p Odd q Odd m 3 = p + q m GoldbachOdd
61 24 60 syl5bi m Odd 7 < m m 3 GoldbachEven m GoldbachOdd
62 9 23 61 3syld m Odd 7 < m n Even 4 < n n GoldbachEven m GoldbachOdd
63 62 com12 n Even 4 < n n GoldbachEven m Odd 7 < m m GoldbachOdd
64 63 expd n Even 4 < n n GoldbachEven m Odd 7 < m m GoldbachOdd
65 64 ralrimiv n Even 4 < n n GoldbachEven m Odd 7 < m m GoldbachOdd