Metamath Proof Explorer


Theorem sbgoldbwt

Description: If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion sbgoldbwt n Even 4 < n n GoldbachEven m Odd 5 < m m GoldbachOddW

Proof

Step Hyp Ref Expression
1 oddz m Odd m
2 5nn 5
3 2 nnzi 5
4 zltp1le 5 m 5 < m 5 + 1 m
5 3 4 mpan m 5 < m 5 + 1 m
6 5p1e6 5 + 1 = 6
7 6 breq1i 5 + 1 m 6 m
8 6re 6
9 8 a1i m 6
10 zre m m
11 9 10 leloed m 6 m 6 < m 6 = m
12 7 11 syl5bb m 5 + 1 m 6 < m 6 = m
13 6nn 6
14 13 nnzi 6
15 zltp1le 6 m 6 < m 6 + 1 m
16 14 15 mpan m 6 < m 6 + 1 m
17 6p1e7 6 + 1 = 7
18 17 breq1i 6 + 1 m 7 m
19 7re 7
20 19 a1i m 7
21 20 10 leloed m 7 m 7 < m 7 = m
22 18 21 syl5bb m 6 + 1 m 7 < m 7 = m
23 simpr 7 < m m m Odd m Odd
24 3odd 3 Odd
25 23 24 jctir 7 < m m m Odd m Odd 3 Odd
26 omoeALTV m Odd 3 Odd m 3 Even
27 breq2 n = m 3 4 < n 4 < m 3
28 eleq1 n = m 3 n GoldbachEven m 3 GoldbachEven
29 27 28 imbi12d n = m 3 4 < n n GoldbachEven 4 < m 3 m 3 GoldbachEven
30 29 rspcv m 3 Even n Even 4 < n n GoldbachEven 4 < m 3 m 3 GoldbachEven
31 25 26 30 3syl 7 < m m m Odd n Even 4 < n n GoldbachEven 4 < m 3 m 3 GoldbachEven
32 4p3e7 4 + 3 = 7
33 32 eqcomi 7 = 4 + 3
34 33 breq1i 7 < m 4 + 3 < m
35 4re 4
36 35 a1i m 4
37 3re 3
38 37 a1i m 3
39 ltaddsub 4 3 m 4 + 3 < m 4 < m 3
40 39 biimpd 4 3 m 4 + 3 < m 4 < m 3
41 36 38 10 40 syl3anc m 4 + 3 < m 4 < m 3
42 34 41 syl5bi m 7 < m 4 < m 3
43 42 impcom 7 < m m 4 < m 3
44 43 adantr 7 < m m m Odd 4 < m 3
45 pm2.27 4 < m 3 4 < m 3 m 3 GoldbachEven m 3 GoldbachEven
46 44 45 syl 7 < m m m Odd 4 < m 3 m 3 GoldbachEven m 3 GoldbachEven
47 isgbe m 3 GoldbachEven m 3 Even p q p Odd q Odd m 3 = p + q
48 3prm 3
49 48 a1i m 3
50 zcn m m
51 3cn 3
52 50 51 jctir m m 3
53 npcan m 3 m - 3 + 3 = m
54 53 eqcomd m 3 m = m - 3 + 3
55 52 54 syl m m = m - 3 + 3
56 oveq2 3 = r m - 3 + 3 = m - 3 + r
57 56 eqcoms r = 3 m - 3 + 3 = m - 3 + r
58 55 57 sylan9eq m r = 3 m = m - 3 + r
59 49 58 rspcedeq2vd m r m = m - 3 + r
60 oveq1 m 3 = p + q m - 3 + r = p + q + r
61 60 eqeq2d m 3 = p + q m = m - 3 + r m = p + q + r
62 61 rexbidv m 3 = p + q r m = m - 3 + r r m = p + q + r
63 59 62 syl5ib m 3 = p + q m r m = p + q + r
64 63 3ad2ant3 p Odd q Odd m 3 = p + q m r m = p + q + r
65 64 com12 m p Odd q Odd m 3 = p + q r m = p + q + r
66 65 ad4antlr 7 < m m m Odd p q p Odd q Odd m 3 = p + q r m = p + q + r
67 66 reximdva 7 < m m m Odd p q p Odd q Odd m 3 = p + q q r m = p + q + r
68 67 reximdva 7 < m m m Odd p q p Odd q Odd m 3 = p + q p q r m = p + q + r
69 68 23 jctild 7 < m m m Odd p q p Odd q Odd m 3 = p + q m Odd p q r m = p + q + r
70 isgbow m GoldbachOddW m Odd p q r m = p + q + r
71 69 70 syl6ibr 7 < m m m Odd p q p Odd q Odd m 3 = p + q m GoldbachOddW
72 71 adantld 7 < m m m Odd m 3 Even p q p Odd q Odd m 3 = p + q m GoldbachOddW
73 47 72 syl5bi 7 < m m m Odd m 3 GoldbachEven m GoldbachOddW
74 31 46 73 3syld 7 < m m m Odd n Even 4 < n n GoldbachEven m GoldbachOddW
75 74 ex 7 < m m m Odd n Even 4 < n n GoldbachEven m GoldbachOddW
76 75 com23 7 < m m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
77 76 ex 7 < m m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
78 7gbow 7 GoldbachOddW
79 eleq1 7 = m 7 GoldbachOddW m GoldbachOddW
80 78 79 mpbii 7 = m m GoldbachOddW
81 80 a1d 7 = m m Odd m GoldbachOddW
82 81 a1d 7 = m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
83 82 a1d 7 = m m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
84 77 83 jaoi 7 < m 7 = m m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
85 84 com12 m 7 < m 7 = m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
86 22 85 sylbid m 6 + 1 m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
87 16 86 sylbid m 6 < m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
88 87 com12 6 < m m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
89 eleq1 6 = m 6 Odd m Odd
90 6even 6 Even
91 evennodd 6 Even ¬ 6 Odd
92 91 pm2.21d 6 Even 6 Odd m GoldbachOddW
93 90 92 ax-mp 6 Odd m GoldbachOddW
94 89 93 syl6bir 6 = m m Odd m GoldbachOddW
95 94 a1d 6 = m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
96 95 a1d 6 = m m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
97 88 96 jaoi 6 < m 6 = m m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
98 97 com12 m 6 < m 6 = m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
99 12 98 sylbid m 5 + 1 m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
100 5 99 sylbid m 5 < m n Even 4 < n n GoldbachEven m Odd m GoldbachOddW
101 100 com24 m m Odd n Even 4 < n n GoldbachEven 5 < m m GoldbachOddW
102 1 101 mpcom m Odd n Even 4 < n n GoldbachEven 5 < m m GoldbachOddW
103 102 impcom n Even 4 < n n GoldbachEven m Odd 5 < m m GoldbachOddW
104 103 ralrimiva n Even 4 < n n GoldbachEven m Odd 5 < m m GoldbachOddW