Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004) (Proof shortened by Wolf Lammen, 25-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbhypf.1 | |
|
| sbhypf.2 | |
||
| Assertion | sbhypf | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbhypf.1 | |
|
| 2 | sbhypf.2 | |
|
| 3 | 2 | sbimi | |
| 4 | eqsb1 | |
|
| 5 | 1 | sbf | |
| 6 | 5 | sblbis | |
| 7 | 3 4 6 | 3imtr3i | |