Metamath Proof Explorer


Theorem sbhypf

Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004)

Ref Expression
Hypotheses sbhypf.1 x ψ
sbhypf.2 x = A φ ψ
Assertion sbhypf y = A y x φ ψ

Proof

Step Hyp Ref Expression
1 sbhypf.1 x ψ
2 sbhypf.2 x = A φ ψ
3 eqeq1 x = y x = A y = A
4 3 equsexvw x x = y x = A y = A
5 nfs1v x y x φ
6 5 1 nfbi x y x φ ψ
7 sbequ12 x = y φ y x φ
8 7 bicomd x = y y x φ φ
9 8 2 sylan9bb x = y x = A y x φ ψ
10 6 9 exlimi x x = y x = A y x φ ψ
11 4 10 sylbir y = A y x φ ψ