Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbhypf.1 | ||
sbhypf.2 | |||
Assertion | sbhypf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbhypf.1 | ||
2 | sbhypf.2 | ||
3 | eqeq1 | ||
4 | 3 | equsexvw | |
5 | nfs1v | ||
6 | 5 1 | nfbi | |
7 | sbequ12 | ||
8 | 7 | bicomd | |
9 | 8 2 | sylan9bb | |
10 | 6 9 | exlimi | |
11 | 4 10 | sylbir |