Metamath Proof Explorer


Theorem sbi1

Description: Distribute substitution over implication. (Contributed by NM, 14-May-1993) Remove dependencies on axioms. (Revised by Steven Nguyen, 24-Jul-2023)

Ref Expression
Assertion sbi1 yxφψyxφyxψ

Proof

Step Hyp Ref Expression
1 df-sb yxφψzz=yxx=zφψ
2 ax-2 x=zφψx=zφx=zψ
3 2 al2imi xx=zφψxx=zφxx=zψ
4 3 imim3i z=yxx=zφψz=yxx=zφz=yxx=zψ
5 4 al2imi zz=yxx=zφψzz=yxx=zφzz=yxx=zψ
6 df-sb yxφzz=yxx=zφ
7 df-sb yxψzz=yxx=zψ
8 5 6 7 3imtr4g zz=yxx=zφψyxφyxψ
9 1 8 sylbi yxφψyxφyxψ