Metamath Proof Explorer


Theorem sbid2

Description: An identity law for substitution. Usage of this theorem is discouraged because it depends on ax-13 . Check out sbid2vw for a weaker version requiring fewer axioms. (Contributed by NM, 14-May-1993) (Revised by Mario Carneiro, 6-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypothesis sbid2.1 x φ
Assertion sbid2 y x x y φ φ

Proof

Step Hyp Ref Expression
1 sbid2.1 x φ
2 sbco y x x y φ y x φ
3 1 sbf y x φ φ
4 2 3 bitri y x x y φ φ