Metamath Proof Explorer


Theorem sbie

Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev and sbievw . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 30-Jun-1994) (Revised by Mario Carneiro, 4-Oct-2016) (Proof shortened by Wolf Lammen, 13-Jul-2019) (New usage is discouraged.)

Ref Expression
Hypotheses sbie.1 x ψ
sbie.2 x = y φ ψ
Assertion sbie y x φ ψ

Proof

Step Hyp Ref Expression
1 sbie.1 x ψ
2 sbie.2 x = y φ ψ
3 equsb1 y x x = y
4 2 sbimi y x x = y y x φ ψ
5 3 4 ax-mp y x φ ψ
6 1 sbf y x ψ ψ
7 6 sblbis y x φ ψ y x φ ψ
8 5 7 mpbi y x φ ψ