Metamath Proof Explorer


Theorem sbiedv

Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie ). Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbiedvw when possible. (Contributed by NM, 7-Jan-2017) (New usage is discouraged.)

Ref Expression
Hypothesis sbiedv.1 φ x = y ψ χ
Assertion sbiedv φ y x ψ χ

Proof

Step Hyp Ref Expression
1 sbiedv.1 φ x = y ψ χ
2 nfv x φ
3 nfvd φ x χ
4 1 ex φ x = y ψ χ
5 2 3 4 sbied φ y x ψ χ