Metamath Proof Explorer


Theorem sbiedvw

Description: Conversion of implicit substitution to explicit substitution (deduction version of sbievw ). Version of sbied and sbiedv with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994) (Revised by Gino Giotto, 29-Jan-2024)

Ref Expression
Hypothesis sbiedvw.1 φ x = y ψ χ
Assertion sbiedvw φ y x ψ χ

Proof

Step Hyp Ref Expression
1 sbiedvw.1 φ x = y ψ χ
2 sbrimvw y x φ ψ φ y x ψ
3 1 expcom x = y φ ψ χ
4 3 pm5.74d x = y φ ψ φ χ
5 4 sbievw y x φ ψ φ χ
6 2 5 bitr3i φ y x ψ φ χ
7 6 pm5.74ri φ y x ψ χ