Metamath Proof Explorer


Theorem sbiedw

Description: Conversion of implicit substitution to explicit substitution (deduction version of sbiev ). Version of sbied with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 30-Jun-1994) (Revised by Gino Giotto, 10-Jan-2024) Avoid ax-10 . (Revised by Wolf Lammen, 28-Jan-2024)

Ref Expression
Hypotheses sbiedw.1 x φ
sbiedw.2 φ x χ
sbiedw.3 φ x = y ψ χ
Assertion sbiedw φ y x ψ χ

Proof

Step Hyp Ref Expression
1 sbiedw.1 x φ
2 sbiedw.2 φ x χ
3 sbiedw.3 φ x = y ψ χ
4 1 sbrimv y x φ ψ φ y x ψ
5 1 2 nfim1 x φ χ
6 3 com12 x = y φ ψ χ
7 6 pm5.74d x = y φ ψ φ χ
8 5 7 sbiev y x φ ψ φ χ
9 4 8 bitr3i φ y x ψ φ χ
10 9 pm5.74ri φ y x ψ χ