Metamath Proof Explorer


Theorem sbievw

Description: Conversion of implicit substitution to explicit substitution. Version of sbie and sbiev with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994) (Revised by BJ, 18-Jul-2023)

Ref Expression
Hypothesis sbievw.is x = y φ ψ
Assertion sbievw y x φ ψ

Proof

Step Hyp Ref Expression
1 sbievw.is x = y φ ψ
2 sb6 y x φ x x = y φ
3 1 equsalvw x x = y φ ψ
4 2 3 bitri y x φ ψ