Metamath Proof Explorer


Theorem sbimd

Description: Deduction substituting both sides of an implication. (Contributed by Wolf Lammen, 24-Nov-2022) Revise df-sb . (Revised by Steven Nguyen, 9-Jul-2023)

Ref Expression
Hypotheses sbimd.1 x φ
sbimd.2 φ ψ χ
Assertion sbimd φ y x ψ y x χ

Proof

Step Hyp Ref Expression
1 sbimd.1 x φ
2 sbimd.2 φ ψ χ
3 1 2 alrimi φ x ψ χ
4 spsbim x ψ χ y x ψ y x χ
5 3 4 syl φ y x ψ y x χ