Metamath Proof Explorer


Theorem sbimi

Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998) Revise df-sb . (Revised by BJ, 22-Dec-2020) (Proof shortened by Steven Nguyen, 24-Jul-2023)

Ref Expression
Hypothesis sbimi.1 φ ψ
Assertion sbimi t x φ t x ψ

Proof

Step Hyp Ref Expression
1 sbimi.1 φ ψ
2 1 sbt t x φ ψ
3 sbi1 t x φ ψ t x φ t x ψ
4 2 3 ax-mp t x φ t x ψ