Metamath Proof Explorer


Theorem sblbis

Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993)

Ref Expression
Hypothesis sblbis.1 y x φ ψ
Assertion sblbis y x χ φ y x χ ψ

Proof

Step Hyp Ref Expression
1 sblbis.1 y x φ ψ
2 sbbi y x χ φ y x χ y x φ
3 1 bibi2i y x χ y x φ y x χ ψ
4 2 3 bitri y x χ φ y x χ ψ