Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
sbmo
Next ⟩
eu4
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbmo
Description:
Substitution into an at-most-one quantifier.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Assertion
sbmo
⊢
y
x
∃
*
z
φ
↔
∃
*
z
y
x
φ
Proof
Step
Hyp
Ref
Expression
1
sbex
⊢
y
x
∃
w
∀
z
φ
→
z
=
w
↔
∃
w
y
x
∀
z
φ
→
z
=
w
2
nfv
⊢
Ⅎ
x
z
=
w
3
2
sblim
⊢
y
x
φ
→
z
=
w
↔
y
x
φ
→
z
=
w
4
3
sbalv
⊢
y
x
∀
z
φ
→
z
=
w
↔
∀
z
y
x
φ
→
z
=
w
5
4
exbii
⊢
∃
w
y
x
∀
z
φ
→
z
=
w
↔
∃
w
∀
z
y
x
φ
→
z
=
w
6
1
5
bitri
⊢
y
x
∃
w
∀
z
φ
→
z
=
w
↔
∃
w
∀
z
y
x
φ
→
z
=
w
7
df-mo
⊢
∃
*
z
φ
↔
∃
w
∀
z
φ
→
z
=
w
8
7
sbbii
⊢
y
x
∃
*
z
φ
↔
y
x
∃
w
∀
z
φ
→
z
=
w
9
df-mo
⊢
∃
*
z
y
x
φ
↔
∃
w
∀
z
y
x
φ
→
z
=
w
10
6
8
9
3bitr4i
⊢
y
x
∃
*
z
φ
↔
∃
*
z
y
x
φ