Metamath Proof Explorer


Theorem sbn

Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993) (Proof shortened by Wolf Lammen, 30-Apr-2018) Revise df-sb . (Revised by BJ, 25-Dec-2020)

Ref Expression
Assertion sbn t x ¬ φ ¬ t x φ

Proof

Step Hyp Ref Expression
1 df-sb t x ¬ φ y y = t x x = y ¬ φ
2 alinexa x x = y ¬ φ ¬ x x = y φ
3 2 imbi2i y = t x x = y ¬ φ y = t ¬ x x = y φ
4 3 albii y y = t x x = y ¬ φ y y = t ¬ x x = y φ
5 alinexa y y = t ¬ x x = y φ ¬ y y = t x x = y φ
6 dfsb7 t x φ y y = t x x = y φ
7 5 6 xchbinxr y y = t ¬ x x = y φ ¬ t x φ
8 1 4 7 3bitri t x ¬ φ ¬ t x φ