Metamath Proof Explorer


Theorem sbrbif

Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 4-Oct-2016)

Ref Expression
Hypotheses sbrbif.1 x χ
sbrbif.2 y x φ ψ
Assertion sbrbif y x φ χ ψ χ

Proof

Step Hyp Ref Expression
1 sbrbif.1 x χ
2 sbrbif.2 y x φ ψ
3 2 sbrbis y x φ χ ψ y x χ
4 1 sbf y x χ χ
5 4 bibi2i ψ y x χ ψ χ
6 3 5 bitri y x φ χ ψ χ