Metamath Proof Explorer
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 4-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
sbrbif.1 |
|
|
|
sbrbif.2 |
|
|
Assertion |
sbrbif |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sbrbif.1 |
|
2 |
|
sbrbif.2 |
|
3 |
2
|
sbrbis |
|
4 |
1
|
sbf |
|
5 |
4
|
bibi2i |
|
6 |
3 5
|
bitri |
|