Metamath Proof Explorer


Theorem sbrim

Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. See sbrimv for a version with disjoint variables not requiring ax-10 . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 4-Oct-2016)

Ref Expression
Hypothesis sbrim.1 x φ
Assertion sbrim y x φ ψ φ y x ψ

Proof

Step Hyp Ref Expression
1 sbrim.1 x φ
2 sbim y x φ ψ y x φ y x ψ
3 1 sbf y x φ φ
4 3 imbi1i y x φ y x ψ φ y x ψ
5 2 4 bitri y x φ ψ φ y x ψ