Metamath Proof Explorer


Theorem sbrimv

Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim not depending on ax-10 , but with disjoint variables. (Contributed by Wolf Lammen, 28-Jan-2024)

Ref Expression
Hypothesis sbrim.1 x φ
Assertion sbrimv y x φ ψ φ y x ψ

Proof

Step Hyp Ref Expression
1 sbrim.1 x φ
2 1 19.21 x φ x = y ψ φ x x = y ψ
3 2 sbrimvlem y x φ ψ φ y x ψ