Metamath Proof Explorer


Theorem sbss

Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010) (Proof shortened by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion sbss y x x A y A

Proof

Step Hyp Ref Expression
1 sseq1 x = z x A z A
2 sseq1 z = y z A y A
3 1 2 sbievw2 y x x A y A