Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
sbthb
Next ⟩
sbthcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbthb
Description:
Schroeder-Bernstein Theorem and its converse.
(Contributed by
NM
, 8-Jun-1998)
Ref
Expression
Assertion
sbthb
⊢
A
≼
B
∧
B
≼
A
↔
A
≈
B
Proof
Step
Hyp
Ref
Expression
1
sbth
⊢
A
≼
B
∧
B
≼
A
→
A
≈
B
2
endom
⊢
A
≈
B
→
A
≼
B
3
ensym
⊢
A
≈
B
→
B
≈
A
4
endom
⊢
B
≈
A
→
B
≼
A
5
3
4
syl
⊢
A
≈
B
→
B
≼
A
6
2
5
jca
⊢
A
≈
B
→
A
≼
B
∧
B
≼
A
7
1
6
impbii
⊢
A
≼
B
∧
B
≼
A
↔
A
≈
B