Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
sbthcl
Next ⟩
dfsdom2
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbthcl
Description:
Schroeder-Bernstein Theorem in class form.
(Contributed by
NM
, 28-Mar-1998)
Ref
Expression
Assertion
sbthcl
⊢
≈
=
≼
∩
≼
-1
Proof
Step
Hyp
Ref
Expression
1
relen
⊢
Rel
⁡
≈
2
inss1
⊢
≼
∩
≼
-1
⊆
≼
3
reldom
⊢
Rel
⁡
≼
4
relss
⊢
≼
∩
≼
-1
⊆
≼
→
Rel
⁡
≼
→
Rel
⁡
≼
∩
≼
-1
5
2
3
4
mp2
⊢
Rel
⁡
≼
∩
≼
-1
6
brin
⊢
x
≼
∩
≼
-1
y
↔
x
≼
y
∧
x
≼
-1
y
7
vex
⊢
x
∈
V
8
vex
⊢
y
∈
V
9
7
8
brcnv
⊢
x
≼
-1
y
↔
y
≼
x
10
9
anbi2i
⊢
x
≼
y
∧
x
≼
-1
y
↔
x
≼
y
∧
y
≼
x
11
sbthb
⊢
x
≼
y
∧
y
≼
x
↔
x
≈
y
12
6
10
11
3bitrri
⊢
x
≈
y
↔
x
≼
∩
≼
-1
y
13
1
5
12
eqbrriv
⊢
≈
=
≼
∩
≼
-1