Metamath Proof Explorer


Theorem sbthcl

Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998)

Ref Expression
Assertion sbthcl = -1

Proof

Step Hyp Ref Expression
1 relen Rel
2 inss1 -1
3 reldom Rel
4 relss -1 Rel Rel -1
5 2 3 4 mp2 Rel -1
6 brin x -1 y x y x -1 y
7 vex x V
8 vex y V
9 7 8 brcnv x -1 y y x
10 9 anbi2i x y x -1 y x y y x
11 sbthb x y y x x y
12 6 10 11 3bitrri x y x -1 y
13 1 5 12 eqbrriv = -1