Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
sbthlem3
Next ⟩
sbthlem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbthlem3
Description:
Lemma for
sbth
.
(Contributed by
NM
, 22-Mar-1998)
Ref
Expression
Hypotheses
sbthlem.1
⊢
A
∈
V
sbthlem.2
⊢
D
=
x
|
x
⊆
A
∧
g
B
∖
f
x
⊆
A
∖
x
Assertion
sbthlem3
⊢
ran
⁡
g
⊆
A
→
g
B
∖
f
⋃
D
=
A
∖
⋃
D
Proof
Step
Hyp
Ref
Expression
1
sbthlem.1
⊢
A
∈
V
2
sbthlem.2
⊢
D
=
x
|
x
⊆
A
∧
g
B
∖
f
x
⊆
A
∖
x
3
1
2
sbthlem2
⊢
ran
⁡
g
⊆
A
→
A
∖
g
B
∖
f
⋃
D
⊆
⋃
D
4
1
2
sbthlem1
⊢
⋃
D
⊆
A
∖
g
B
∖
f
⋃
D
5
3
4
jctil
⊢
ran
⁡
g
⊆
A
→
⋃
D
⊆
A
∖
g
B
∖
f
⋃
D
∧
A
∖
g
B
∖
f
⋃
D
⊆
⋃
D
6
eqss
⊢
⋃
D
=
A
∖
g
B
∖
f
⋃
D
↔
⋃
D
⊆
A
∖
g
B
∖
f
⋃
D
∧
A
∖
g
B
∖
f
⋃
D
⊆
⋃
D
7
5
6
sylibr
⊢
ran
⁡
g
⊆
A
→
⋃
D
=
A
∖
g
B
∖
f
⋃
D
8
7
difeq2d
⊢
ran
⁡
g
⊆
A
→
A
∖
⋃
D
=
A
∖
A
∖
g
B
∖
f
⋃
D
9
imassrn
⊢
g
B
∖
f
⋃
D
⊆
ran
⁡
g
10
sstr2
⊢
g
B
∖
f
⋃
D
⊆
ran
⁡
g
→
ran
⁡
g
⊆
A
→
g
B
∖
f
⋃
D
⊆
A
11
9
10
ax-mp
⊢
ran
⁡
g
⊆
A
→
g
B
∖
f
⋃
D
⊆
A
12
dfss4
⊢
g
B
∖
f
⋃
D
⊆
A
↔
A
∖
A
∖
g
B
∖
f
⋃
D
=
g
B
∖
f
⋃
D
13
11
12
sylib
⊢
ran
⁡
g
⊆
A
→
A
∖
A
∖
g
B
∖
f
⋃
D
=
g
B
∖
f
⋃
D
14
8
13
eqtr2d
⊢
ran
⁡
g
⊆
A
→
g
B
∖
f
⋃
D
=
A
∖
⋃
D