Metamath Proof Explorer


Theorem sbthlem3

Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 A V
sbthlem.2 D = x | x A g B f x A x
Assertion sbthlem3 ran g A g B f D = A D

Proof

Step Hyp Ref Expression
1 sbthlem.1 A V
2 sbthlem.2 D = x | x A g B f x A x
3 1 2 sbthlem2 ran g A A g B f D D
4 1 2 sbthlem1 D A g B f D
5 3 4 jctil ran g A D A g B f D A g B f D D
6 eqss D = A g B f D D A g B f D A g B f D D
7 5 6 sylibr ran g A D = A g B f D
8 7 difeq2d ran g A A D = A A g B f D
9 imassrn g B f D ran g
10 sstr2 g B f D ran g ran g A g B f D A
11 9 10 ax-mp ran g A g B f D A
12 dfss4 g B f D A A A g B f D = g B f D
13 11 12 sylib ran g A A A g B f D = g B f D
14 8 13 eqtr2d ran g A g B f D = A D