Metamath Proof Explorer


Theorem sbthlem7

Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 A V
sbthlem.2 D = x | x A g B f x A x
sbthlem.3 H = f D g -1 A D
Assertion sbthlem7 Fun f Fun g -1 Fun H

Proof

Step Hyp Ref Expression
1 sbthlem.1 A V
2 sbthlem.2 D = x | x A g B f x A x
3 sbthlem.3 H = f D g -1 A D
4 funres Fun f Fun f D
5 funres Fun g -1 Fun g -1 A D
6 dmres dom f D = D dom f
7 inss1 D dom f D
8 6 7 eqsstri dom f D D
9 ssrin dom f D D dom f D dom g -1 A D D dom g -1 A D
10 8 9 ax-mp dom f D dom g -1 A D D dom g -1 A D
11 dmres dom g -1 A D = A D dom g -1
12 inss1 A D dom g -1 A D
13 11 12 eqsstri dom g -1 A D A D
14 sslin dom g -1 A D A D D dom g -1 A D D A D
15 13 14 ax-mp D dom g -1 A D D A D
16 10 15 sstri dom f D dom g -1 A D D A D
17 disjdif D A D =
18 16 17 sseqtri dom f D dom g -1 A D
19 ss0 dom f D dom g -1 A D dom f D dom g -1 A D =
20 18 19 ax-mp dom f D dom g -1 A D =
21 funun Fun f D Fun g -1 A D dom f D dom g -1 A D = Fun f D g -1 A D
22 20 21 mpan2 Fun f D Fun g -1 A D Fun f D g -1 A D
23 4 5 22 syl2an Fun f Fun g -1 Fun f D g -1 A D
24 3 funeqi Fun H Fun f D g -1 A D
25 23 24 sylibr Fun f Fun g -1 Fun H