Metamath Proof Explorer


Theorem sbtrt

Description: Partially closed form of sbtr . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by BJ, 4-Jun-2019) (New usage is discouraged.)

Ref Expression
Hypothesis sbtrt.nf y φ
Assertion sbtrt y y x φ φ

Proof

Step Hyp Ref Expression
1 sbtrt.nf y φ
2 stdpc4 y y x φ x y y x φ
3 1 sbid2 x y y x φ φ
4 2 3 sylib y y x φ φ