Metamath Proof Explorer


Theorem scafeq

Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses scaffval.b B = Base W
scaffval.f F = Scalar W
scaffval.k K = Base F
scaffval.a ˙ = 𝑠𝑓 W
scaffval.s · ˙ = W
Assertion scafeq · ˙ Fn K × B ˙ = · ˙

Proof

Step Hyp Ref Expression
1 scaffval.b B = Base W
2 scaffval.f F = Scalar W
3 scaffval.k K = Base F
4 scaffval.a ˙ = 𝑠𝑓 W
5 scaffval.s · ˙ = W
6 1 2 3 4 5 scaffval ˙ = x K , y B x · ˙ y
7 fnov · ˙ Fn K × B · ˙ = x K , y B x · ˙ y
8 7 biimpi · ˙ Fn K × B · ˙ = x K , y B x · ˙ y
9 6 8 eqtr4id · ˙ Fn K × B ˙ = · ˙