Metamath Proof Explorer


Theorem scaffval

Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses scaffval.b B = Base W
scaffval.f F = Scalar W
scaffval.k K = Base F
scaffval.a ˙ = 𝑠𝑓 W
scaffval.s · ˙ = W
Assertion scaffval ˙ = x K , y B x · ˙ y

Proof

Step Hyp Ref Expression
1 scaffval.b B = Base W
2 scaffval.f F = Scalar W
3 scaffval.k K = Base F
4 scaffval.a ˙ = 𝑠𝑓 W
5 scaffval.s · ˙ = W
6 fveq2 w = W Scalar w = Scalar W
7 6 2 eqtr4di w = W Scalar w = F
8 7 fveq2d w = W Base Scalar w = Base F
9 8 3 eqtr4di w = W Base Scalar w = K
10 fveq2 w = W Base w = Base W
11 10 1 eqtr4di w = W Base w = B
12 fveq2 w = W w = W
13 12 5 eqtr4di w = W w = · ˙
14 13 oveqd w = W x w y = x · ˙ y
15 9 11 14 mpoeq123dv w = W x Base Scalar w , y Base w x w y = x K , y B x · ˙ y
16 df-scaf 𝑠𝑓 = w V x Base Scalar w , y Base w x w y
17 3 fvexi K V
18 1 fvexi B V
19 5 fvexi · ˙ V
20 19 rnex ran · ˙ V
21 p0ex V
22 20 21 unex ran · ˙ V
23 df-ov x · ˙ y = · ˙ x y
24 fvrn0 · ˙ x y ran · ˙
25 23 24 eqeltri x · ˙ y ran · ˙
26 25 rgen2w x K y B x · ˙ y ran · ˙
27 17 18 22 26 mpoexw x K , y B x · ˙ y V
28 15 16 27 fvmpt W V 𝑠𝑓 W = x K , y B x · ˙ y
29 fvprc ¬ W V 𝑠𝑓 W =
30 fvprc ¬ W V Base W =
31 1 30 eqtrid ¬ W V B =
32 31 olcd ¬ W V K = B =
33 0mpo0 K = B = x K , y B x · ˙ y =
34 32 33 syl ¬ W V x K , y B x · ˙ y =
35 29 34 eqtr4d ¬ W V 𝑠𝑓 W = x K , y B x · ˙ y
36 28 35 pm2.61i 𝑠𝑓 W = x K , y B x · ˙ y
37 4 36 eqtri ˙ = x K , y B x · ˙ y