Metamath Proof Explorer


Theorem scafval

Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses scaffval.b B = Base W
scaffval.f F = Scalar W
scaffval.k K = Base F
scaffval.a ˙ = 𝑠𝑓 W
scaffval.s · ˙ = W
Assertion scafval X K Y B X ˙ Y = X · ˙ Y

Proof

Step Hyp Ref Expression
1 scaffval.b B = Base W
2 scaffval.f F = Scalar W
3 scaffval.k K = Base F
4 scaffval.a ˙ = 𝑠𝑓 W
5 scaffval.s · ˙ = W
6 oveq12 x = X y = Y x · ˙ y = X · ˙ Y
7 1 2 3 4 5 scaffval ˙ = x K , y B x · ˙ y
8 ovex X · ˙ Y V
9 6 7 8 ovmpoa X K Y B X ˙ Y = X · ˙ Y